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II. On the Precession of the Equinoxes. By the Rev. Abram
Robertson, M. 4. F.R. 8. Savilian Professor of Geometry in
the Untversity of Ozford.

Read December 18, 1806.

P ERHAPS the solution of no other problem, in natural philo-
sophy, has so often baffled the attempts of mathematicians as
that of determining the precession of the equinoxes, by the
theory of gravity. The phenomenon itself was observed about
one hundred and fifty years before the christian aera, but Sir

Isaac NEwToN was the first who endeavoured to estimate its-
magnitude by the true principles of motion, combined with

the attractive influence of the sun and moon on the spheroidal
figure of the earth. It has always been allowed, by those
competent to judge, that his investigations relating to the
subject evince the same transcendent abilities as are displayed
in the other parts of his immortal work, THE MATHEMATICAL
PrincIPLES OF NATURAL PHirosorHY, but, for more than half
a century past, it has been justly asserted that he made a
mistake in his process, which rendered his conclusions erro-
neous. |
Since the detection of this error, some of the most eminent
mathematicians in Europe have attempted solutions of the
problem. -Their success has been various ; but their investi~
gations may be arranged under three general heads. Under
the first of these may be placed such as lead to a wrong
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58 Mr. RoBERTSON. 0 the Precession

conclusion, in consequence of a mistake committed in some
part of the praceedings. The second head may be allotted to
those in which the conclusions may be admitted as just, but
rendered so by the counteraction of opposite errors. Such
may be ranked under the third head as are conducted without
error fatal to the conclusion, and in which the result is as
near the truth as the subject seems to admit.

The authors of those investigations, of each of the three
descriptions, are entitled to much praise. Their productions
afford the most unquestionable proofs of great talents, great
zeal, and great perseverance, exerted in the cultivation of
science. The mistakes committed in those of the two first
descriptions, and the obscurity and perplexity with which
those of the third may be charged, are, in my opinion, to be
attributed to the same cause, the uncultivated state of that
particular department of the doctrine of motion, which con-
stitutes the appropriate foundation for the solution -of the
problem. The department to which I allude is that of com-
pound rotatory motion. |

In consequence of this persuasion I have, in the first nine
of the following articles, endeavoured to investigate the pri-
mary properties of compound rotatory motion from clear and
unexceptionable principles. The disturbing solar force on
the spheroidal figure of the earth is then calculated, and the
angular velocity which it produces is afterwards compared
with that of the diurnal revolution, by means of the properties
of rotatory motion previously demonstrated. The quantity
of annual precession is then calculated in the usual way, and
also that of nutation, as far as they are produced by the
disturbing force ofthe sun.
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1. Let C, (Plate II. Fig. 1.) be the centre of two circular
arcs AB, EF, which are the measures of the angles ACB,
ECF; and let CB cut EF in D. Then, as the sectors ACB,

ECD are similar, CA: CE:: AB:ED = CEXAB But (Ev. 33
VL) ED : EF :: the angle ACB :the angle ECF and therefore

CEx2%.EF:: <ACB: <ECF. Consequently CExABx<ECF
= CA x EF x < ACB; and therefore AB: EF:: CAx <ACB
: CE x < ECF.

2. Let ACB, GEF (Fig. 2.) be two angles, of which the
arcs AB, GF are the measures; and the radii CA, EG not
being necessarily equal, let the sines BK, FQ be equal to one
another. Let BH, FM be tangents to the curves; and let
HD, MN be parallel to CA, EG respectively, and meet BK,
FQ in D, N, as represented. Then as CBH, BDH are right
angles, the triangles CBK, BHD are equiangular, and CB .
BK::BH: HD or its equal KL, if HL be drawn parallel to

BK, and meet CA in L. Consequently BK._CBB’E{KL For

the same reasons, if MP be parallel to FQ and meet EG in
P, FQ = 2EXQ; and therefore as BK, FQ are, by hypothesis,

FM
equal, CB:}? L EFF’;A@. Hence CB x KL x FM = EF x QP
x BH, and BH: FM::CB x KL : EF x QP.

8. If, therefore, we suppose straight lines CH, EM to be
drawn, and that the angles BCH, FEM are indefinitely small,

“and generated in the same time by the revolution of CB, EF
respectively, then BH, FM may be considered as circular
arcs, and by article 1, BH: FM :: CB x < BCH: EF x < FEM.

‘Hence by article 2, (and 11. V.) CB x < BCH: EF x < FEM

: CB x KL EF x QP, and therefore < BCH; < F EM : KL
: Ie
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:QP. Consequently, during the generation of the angles
BCH, FEM, the angular velocity of CB is to the angular
velocity of EF as KL to QP..

4. If ACB (Fig. 3.) be any plane angle, and from any
point E, EF be drawn perpendicular to AC and EH perpen-
dicular to CB, then the angle FEH is equal to the angle ACB,
For let HK be drawn perpendicular to AC, and let EH be
produced to G. First let ACB be an obtuse angle, and then
< ACB=<KHC 4 < HKC+ < KHC 4 < CHG = <KHG
= (29.1.) < FEH. Secondly, ACB being an acute angle,
the right angle GHC = <« GHK 4~ < KHC = < KHC + <
HCK = (15.1.)< KHC 4 < ACB. Consequently the angle
ACB = < GHK = < FEH.

5. Let G (Fig. 4.) be the centre of gravity of a body, and
AB, DC two axes passing through G ; and, while the body
revolves round AB, let AB and consequently the whole body
revolve round DC, the periodical times of these revolutions
not being necessarily equal ; it is required to determine the
direction and angular velocity with which any particle of the
body revolves in consequence of this compound motion.

- Suppose the simple motion of the body about AB to be such,
that during the revolution the parts towards D from AB
would rise above the plane, on which the figure is drawn, and

‘the parts towards C sink below it. And suppose the simple
motion about DC to be such, that during the revolution the
parts towards A from DC would rise above the plane of
the figure, and those towards B sink below it. Let P (Fig. 5.)
be a particle of the body, above the plane; and let PR be a
perpendicular to the said plane.* With the centre G suppose

* The axis DC, and the line RM are intentionally omitted in Fig. 5, with a view
to prevent confusion in the figure. |



of the Equinozxes. 61

a spherical superficies to be described, passing through P,
and let ADBC be the great circle of this sphere in the plane
on which the whole is represented. Let the straight lines
EF, HK pass through R, and be perpendicular to AB, DC
respectively; and let EPF, HPK be lesser circles of the
sphere, EF being a diameter of the one, and HK a diameter
of the other. Then it is evident, that by the simple motion
of the body about AB only the particle P would move in the
circumference FPE ; and by the simple motion of the body
about DC only, P would move in the circumference HPK.
Let the indefinitely small arcs Ps, Pq be those which P would
describe in equal times with the revolutions about AB, DC
separately, and let the parallelogram Pgps be completed on
the spherical superficies. Then it is evident, from the com-
position‘ of motion, that the direction and velocity of P, in
consequence of the compound motion, is as the diagonal Pp of
the parallelogram Pgps.

Let R“MN be the orthographical pI‘OJECtIOIl of Pgps on the
plane ADBC, and then as PR is perpendicular to this plane,
it is evident that R*-MN is a parallelogram, and that its dia-
gonal RM is the direction and velocity of P in the projection,
in consequence of the compound motion. It therefore follows,
from article g, as RN is the angular velocity about the axis
AB, and Rr that about the axis DC, that RM is the angular
velocity about the axis, round which the body is caused to
revolve by the compound motion.

6. The same things being supposed, and the parallelogram
RrMN being the same in Fig. 4 as in Fig. 5, let RM pro-
duced meet the circumference in L and Q, and the diameter
TGS, at right angles to LQ, is the axis sought.

The same axis may be obtained in the following manner.
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In GB take GV equal to RN; and in GC take GW equal to
‘Rr, and VW being drawn it will be parallel to the axis TS.
For as NR is perpendicular to AB, and Rr or NM to DC, by
article 4, the angle RNM, or (34. [.) its equal RrM, is equal
to the angle VGW. Also, on account of the equals, VG : GW"
:: Mr:7R, and therefore (6. VI.) the angles Y/RM, GWV are

equal. Let TS meet HK in O, and LQ in I; and let DC meet

HK in X. Then as the angle OIR is equal to the angle OXG,

each being a right one, and as the angles IOR, XOG are

equal, the angle IRO, or MRy is equal to the angle OGX.

Consequently the alternate angles XGO, GWYV are equal,

and therefore TS, VW are parallel. Hence it is evident that

if the axes AB, DC, and also GV, GW the angular velocities

round them be given, the axis TS is easily found, being pa-

rallel to-'VW. It is proper to observe that GV, GW are to

‘be set off on that side of TS towards which the body is moving,

in consequence of the revolutions round DC, AB.

». From the last article it is evident that VW is equal to
RM, and consequently equal to the angular velocity, with
which the body revolves about the axis TS. If therefore CGB
be arightangle, then theangular velocity VW=v'VG*+ GW".
In other cases the value of VW may be easily calculated by
plane Trigonometry.

8. It is to be remarked, for the sake of precision, that the
linear velocity, of any point, is as the angular velocity multi-
plied into the radius of the circle in whose circumference it
revolves. Thus the linear velocity Ps (Fig. 5.) of the point
P in the circumference FPE, is as its angular velocity in the
‘same, multiplied into the radius of the circle FPE, as is evi-
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dent from article 3. In the following articles, linear velocity
is meant when no adjective is annexed to the word velocity.
9. Let AB, DC (Fig. 6.) be the two axes about which
separately the body would revolve, as stated in article 4, and
let TS be the axis about which it revolves, in consequence of
a combination of these two revolutions. Let TE be at right
angles to AB, and meet it in H, and let TF be at right angles
to DC and meet it in K; and let GV, GW be the angular
velocities about AB, DC, as in the preceding articles. Then-
it follows, from the last article, that the velocity of the point
T, by the revolution about the axis AB only, is equal to
GVxHT. And as this velocity is in the direction of a tangent
at T to the circle of which TE is a diameter, and as this circle
is perpendicular to the plane ADBC, the direction of this
velocity is evidently perpendicular to the plane ADBC. The
direction of this velocity of the point T is also upwards from.
the plane of the figure, agreeable to the statement in article 5.
Again, by the revolution about the axis DC only, the velocity
of T is equal to GW x KT, and, for the foregoing reasons,
the direction of this velocity of the point T is perpendicularly .
downwards below the plane, according to article 5. Now as
TS is the axis about which the body revolves, in consequence
of the combined revolutions about AB, DC, every point in
TS is rendered quiescent by the compound motions. It is
therefore evident that GVxHT=GWxKT. :
10. The revolutions about DC, AB may be supposed to be
caused by instantaneous impulses at A and D, made at the
same time, or at different times ; or they may be supposed to
be occasioned by the ageney of constant forces, like that of
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gravity. For if the causes be adequate to the production of the
same velocities, taken separately, and in the same directions
the velocity and direction of a particle will be the same from
their combined influence upon it, whether these causes be
impulses or constant forces.
As the body is understood to be in free space, if the causes
of the revolutions, taken separately, be instantaneous im-
' pulses, and made at the same time, immediately after their
agency the body will revolve about the axis TS, and it will
continue so to revolve with an uniform velocity. If whilst
the body is revolving with an uniform velocity about the axis
DC, a constant force begin to act at D, so as to cause a ten-
dency to revolution about AB, as stated in article 5, and
continue afterwards to act at T, the pole of the new axis,
from a combination of the constant agency at the new pole
and the uniform velocity about DC, the axis TS will inces-
santly shift its position. |
Such exactly are the circumstances to which the earth is
subject as to the production of the precession of the equmoxes
At the vernal equinox, for instance, a straight line drawn
from the centre of the sun to that of the earth is in the plane
of the equator, and therefore, as equal portions of the pro-
tuberant matter of the earth are above and below the
ecliptic, the attractive power of the sun has no tendency to
alter the position of the equator. But, in consequence of the
earth’s motjon in its orbit, it very soon after the equinox
presents a different position of the equator to the sun. The
equilibrium of the protuberant parts of the earth, above and
below the ecliptic, and towards the sun, is then done away,
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and the attraction of the sun on that side, where the greatest
quantity of protuberant matter is, tends to bring down the
equator into the ecliptic, or to cause the earth to revolve about
a diameter of the equator. This attractive influence of the
sun gradually increases a little till the summer solstice; it
then gradually decreases in the same degree till the autumnal
equinox, when it vanishes. From the autumnal cquinox to
the winter solstice it again gradually increases a little; and it
then gradually decreases in the same degree till the vernal
equinox, when it again vanishes. This recurrence and con-
tinuance of action is annually repeated. '

Similar observations apply to the attraction of the moon on
the protuberant parts of the earth. When a straight line
drawn from her centre to that of the earth is in the plane of
the equator, the attractive influence of the moon has no ten~
dency to change the position of the equator, but in other
situations, the attraction of the moon tends to bring the equator
of thie earth into the plane of the moon’s orbit, or causes the
earth to move round a diameter of the equator. The recur-
rences of the moon’s action on the protuberant parts of the
earth, and the times of their continuing, are repeated every
month. ‘ . |

These effects of the sun and moon are to be considered
separately ; and for the reasons already stated, each of the
actions, combined with the diurnal revolution of the earth,
may be considered as a particular case of compound rotatory
motion. It is needless, however, after investigating the effects
of the sun’s action, and expressing them in general formulze,
to go over the same steps for ascertaining those of the moon,

MDCCCVIIL. . K *
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as they may be inferred from the former, after making due
allowance for the different circumstances under which these
two remote bodies act on ‘the protuberant parts of the earth.
I now proceed to estimate the force with which the sun
tends to cause the ea-rth to revolve about a diameter of the
equator '
Let S be the centre of the sun (Fig. 7.) C that of the
earth ; P, L the poles, PL the axis; and let a plane passing
‘through SC, PL cut the earth in the meridian PEAQB. Let
EQ be the diameter of the equator, and let DF, the diameter
of the spheroid in the plane SPCL, be at right angles to SC.
Let SC cut the meridian EPQL in A, B; and G being sup-
posed a particle of matter in this meridian, let GH parallel to
SC meet DF in H, and let SG be drawn. Let M be the quan-
tity 'of matter in the sun, or its absolute attracting power, and

then o= sae 18 its force upon the particle G, in the direction SG,

~and Shgz is its force upon a particle at C, in the direction SC.
But a force whose power and direction is as GS is equal to a
force whose power and direction is as GC, together with a
force whose power and direction is as CS; and as the force
whose power and direction is as GC, is directed to the centre
it has no tendency to alter the position of the axis PL, and
therefore may be neglected in the present enquiry. Now, by

MeCha]’th SG:8C:: -—Sl-\—é;%%g = the force of the sun on
the particle G, in the direction CS or HG. Now as the dis-
tance of the sun from the earth is indefinitely great when
compared to the diameter DF, its force on any particle in DF

is equal to its force on a particle at C, and therefore the sun’s

force on a particle at H is as g5z, Consequently, as the sun’s
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iyt gy b e MxSC .y -
force on the particle G, in the same direction, is as —g)é'r, th

disturbing force of the sun, by its action on the particle G is
M xSC M MxSC

6T e Y i=aar T et
equal to SC — GH But as SC is indefinitely great with re-.

spect to GH

for SG may be considered as:

_Ig, by actual division may be consxdered as

equal to "SE? + 33%% , and therefore the disturbing force on the

sMxGH
particle at G is *—g—

Let K be a particle in the meridian, but on the opposite side
of DF to that on which G is situated. Let KN, parallel to
SC, meet DF in N ; and suppose SK ta be drawn. Then the
force of the sun on K being —%—{—,»for the same reasons as be-
_MxSC
L+kNi
and after a reductlon similar to the foregomg, the sun’s dis-
3sMx KN

[

Hence it is evident, supposing M and SC to be constant, that

the disturbing force of the sun on any particle in the meridian
PELQ is as the distance of the particle from DF; and that
the sign of the force in the half DAF nearest to S is positive,
but the sign of the force in the other half DBF is _nega{tive;
This difference of the signs indicates that the particles on the
opposite sides of DF have a directly opposite tendency, as to
direction, in affecting the position of the axis PL, or equatof
EQ; and the same is evident from the following considera-~
tions. As the disturbing force is as its distance from DF, it
has no effect on particles in DF, and therefore the inertia* of

fore, its force upon it in the dlrectlon of SCor KN is —=

turbing force on K is —

* By this expression that part of the inertia is meant which opposes the disturbing
force of the sun; and the same is to be understood in the follawing expressions.

Ko
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particles in DF may be considered as equal to the sun’s dis=
turbing force, on the principle of action and reaction being
equal as to magnitude, but directly contrary as to direction.
But on the side of DF nearest to S the disturbing force is
greater than the inertia of any particle G, and it therefore
“urges the particle from DF towards S, by a pressure whose
direction and power is as HG. On the side of DF opposite to
S the distllrbing force is less than the inertia of any particle
K, and therefore the inertia of K opposes the disturbing force:
of the sun by a pressure whose direction is from N towards
K, and whose power is as NK.
- 12. As, by the nature of the spheroid, PELQ is an ellipse,
let GK be the diameter conjugate to DF, and let VI, parallel
to DF, meet it in T, and AB in R and then VI is bisected in
T. Let RI be bisected in v, and let w, ¢ be two points in RI,
equally distant from R and 1 respecti‘vely, Let a=EC, and
d = the disturbing force of the sun at the distance of EC
from DF. Then by the preceding article, a:RC::d: -;li# %« RC.
== the force at R, or at any point in VI, as any'two points in
VI are equally distant from DF. Now it is evident that the
disturbing force on a particle at R, or on any particle in AC,,
has no power to turn the ellipse about C; but the force on a
particle at w tends to turn the ellipse about the centre, for it
is applied at the end of the lever Rw. Consequently, by what
has been already proved in this article, and by the property
of the lever, the force on w to turn the ellipse is % x RC x Rw.
For the same reasons, the force on ¢ to turn the ellipse is.
{:— % RC x Rq, and therefore the force on w and q combined,,

to turn the ellipse, is % x RC x RI, for Rw - Rg = RI.
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Hence, as Rv or ]-?E expresses the number of particles in R¥
or vl, it follows that the force of all the particles in RI, to
turn the ellipse, i s—— x RC x RI x I}—[_—: — x RCxRI*. In the
same way it may be proved that the force of all the partxcles
in VR, to turn the ellipse, is — x RC x RV*. But the force of
the particles in Rl ‘tends to tum the ellipse upwards in the
direction FAD, and the force of the particles in RV tends to
turn it downwards in the contrary direction DAF. The force
of all the particles in VI, therefore, to turn the ellipse, i§
;d; x RC x RV"=RF. But as TV is half the sum of RV, RI, it
follows that RT is half their difference, and therefore RV*—
RI*= VI x 2RT. Consequently the force of the particles in
VI, to turn the elhpse 1s-—- x RC x VI x eRT ==—- x RC x VI

x RT.

18. Let c=CG, t =CD, f=GH, g = CH, y = CR, and

.i....CT Then by similar triangles, c:f::x:y = {f, and

¢ g 12X —. = RT. Also, by the property of the elhpsc,
b GTxTK: TV" CTxc—2: TV’- c—z TV,

Consequently TVe=— \/ ¢ —z* and VI = s/ ¢—2*, and

the force of the pax'txcles in VI, to turn the ellipse, is —'i XY %

ﬁhs/c’-—-x’ £ Zbdfgx V=2, by puttmg = for y.  The

fluxion of thls force is therefore 2%/ fg“ VI x =2 bfﬁ‘”z

; bdffex* i s
g — —f;= -3—%5—-— Ve—a, J% ==y. The fluent of
this expression may be found in the following manner.

14 The fluxion of & x—a" is & x =2l b 2 x 2 x

: L . B —3 S— . . g
CmXE K = QTX ==X X (P 2P[ 3\/ Crmmd™ X I XX K2
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XV == B AT F= X -1 x V=T —

We—r xxi=c% V=2 — g2 %V —~2. Conse-

——_“ R —— c*
‘quently the fluxionof 22— : ZlisaVe—a x < i Ve—z

P 2 b
and the fluxion of be xxc4xlf xxt/c x—:-._f_df
2
x 2%V —2, Hence the fluent of xxs/c —1t x—4-—-
bf

x 2 %V —z° x*—-—theﬂuentof———xxt/c xxT~t11e

. 2b pomprt
fluent of—c,—- x x’ xVe—r= zzf x ”’f‘ Rl

; and therefore

by transposition, the fluent of —?—l’f- x %V e—at x -:; - *-—2,;? %
= :xz“z — the fluent of -—ix X &V o—a Aga,in as V1 is

equal to = \/ ¢ — z*, the fluxion of the area DVIFi is = \/ o
Xy = TIZJ‘- x % v/ c—z*, and therefore the ﬂuent of f
V —z°is the area DVIF'; and the fluent of -—-— xxVo—x x
- is the area DVIF x -5. Consequently the area DVIF x -;-—

2bf x X =%
4

= the ﬂuent of —zc—i:f- x 2* % v/ —2°, and there-
cz

dfe 2b rxC—zE
v fa X f < I"

fore —=- f" x area DVIFx— = = the flu-
ent of af‘f — X I X 1/ c*—x2°, or the force of the particles

in the area DVIF to turn the ellipse. Hence, when z becomes
equal to ¢, the force of all the particles in the semi-ellipse
DGF, to turn the ellipse, is equal to the semi-ellipse DGF x
-gfc;f. % -i—z = the semi-ellipse DGF x %— X -{% x g. By article 11,
therefore, the force of all the particles in the whole ellipse,
which tend to turn it about the centre, is the whole ellipse

PELQ x—i—x{-xg.
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15. The other circumstances as to the figure being the
same as before, let the straight line GV (Fig. 8.) touch the
ellipse in G, meet QF in V and CM parallel to GH in M.
Let GI be perpendicular to QE and meet it in I, and let GH
meet EQ inT. Then, by a well known property of the ellipse,
CI:IT:: EQ: its parameter; and therefore by the nature of
a parmeter, or three proportionals, CI:IT:: CE:: CP:, and

IT= <X Hence CT==CI — IT = CI — <X apq by

TCEF CE® >
another well known property of the ellipse, CV == —%-1- Con-
sequently CT x CV = CE* — CP*. Now as MAC is part of
the straight line drawn from the centre of the sun to that
of the earth, the angle ACE is the sun’s declination, and as DC
is perpendicular to AC, the angle ECD is the complement of
the declination. Let m = the sine of the declination, and
n = its cosine, and then, radius being 1, CT:CH::1:m,
and CV: CM or (34.1.) its equal GH:: 1 : 2. By multipli-
cation therefore, CT x CV: CH x GH :: 1: mn. Conse-
quenty, using the same notation as in the last article, and
putting e == CP, as CT x CV = CE* — CP?, we have ¢* — ¢
:fg::1:mn, and fg =& —¢ x mn. If therefore X denote
the area of the ellipse PELQ, by the last article, the force of
all the particles to turn the ellipse is -g— X .’{'4_:’. x @*—e x X.

16. Let PELQ be the same ellipse in Fig. g, as in the »th
and 8th figures. Let the spheroid be cut by a plane parallel
to PELQ), (Fig. g,) and let the section be the éllipse HKNG :
and let this ellipse be supposed to be above the plane of the
paper on which PELQ) is represented. Again, let the spheroid
~be cut by a plane passing through PL, and perpendicular to

the plane PELQ), and let the line of common section of this
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plane with the ellipse HKNG be HN, and let this ellipse be
cut by the plane: of the equator in the line KG. Then HN
(14. XL.) is parallel to PL, and KG to EQ; and therefore
(10. XI) HN, KG cut one another at right angles. Again,
as the axis PL is perpendicular to the plane of the equator,
the plane of the equator is perpendicular (18. XI.) to the
ellipse PELQ. The planes passing through the centre of the
spheroid and the lines HN, KG are therefore perpendicular to
the ellipse PELQ, and consequently (19. XI.) the straight line
passing through the centre of the spheroid, and the point in
which HN, KG cut one another, is perpendicular to HN, KG
and also to PL, EQ. Consequently as the equator is a circle,
KG (g. IIL.) is bisected by HN ; and as HN is parallel to PL
it is a double ordinate to the diameter of the equator passing
through the point in which HN, KG cut one another, and is
therefore bisected in this point. Hence, as by a well known
property of the spheroid, the ellipses PELQ, HKNG are
similar, it is evident that KG is the transverse, and HN the
conjugate axis of the ellipse HKNG.

Let u = the distance of the centre of the ellipse HKNG
from the centre of the speroid, and then as the points E, K,
G, Q are in the circumference of the equator, a straight line
drawn from the centre of the spheroid to K or G is equal to

a, and half of the straight line KG =V &*—«’. Again, as the
elhpses PELQ, HKNG are sxmllar, ave::Va—u: %\/ a—u*
= half of HN; and &*: ¢*—#*:: X : a;u % X = the area of

the ellipse HKNG. Hence-, in order to find the disturbing
force of the sun on the ellipse HKNG, instead of a* in the

. d o .
expression —;— X %ﬁ x a*—c¢* x X we are to put " —u, instead of
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2 ——— .
¢ We are to put - = xa*—u*, and instead of X we are to put

a®—u*

— X. These substitutions being made, we have -'—]— %= x

4
5—_—'5- X & —u x =2 “X “for the sun’s disturbing force on the

el‘ilpse HKNG, tendmg to turn the ellipse about an axis
passing through C and perpendicular to the plane PELQ.
This expression for the force being multiplied by #, gives the
fluxion of the force on that part of the spheroid between the

ellipses PELQ, HKNG ; and the fluent of this, when # be-

a*—e* 8a3

comes equal to  is —d— X —4— x —x = X Consequently the

y
double of this, viz. — x mn x r—c x 73 X expresses the sun’s

disturbing force on the whole spheroid. Hence if Z = ‘13-‘5X,
which expresses the solid content of the spheroid, the force on

the whole spheroid is —i— X -"i;—l- x @*—¢* % Z. Let this be called
the librating force or pressure, or the force causing libration.

17. It is evident, from the manner in which the librating
pressure is calculated, that the whole of the disturbing force
is occasioned by the protuberance of the spheroid above the
greatest inscribed sphere. For if PELQ Wére a sphere, as VI
(Fig.%.) is parallel to the diameter DF, and AC perpendicular
to it, the straight line VI (g.III.) would be bisected in R ; and
therefore the disturbing forces, above and below AC would
exactly counteract one another.

- Let DCF (Fig. 9.) denote a plane perpendlcular to the
straight line SC, then it is evident that the librating pressure
tends to move the earth about that diameter of the equator,
which is the common section of the equator and the plane
DCF. For the sake of precision hereafter let this diameter
of the equator be called the axis of libration.

MDCCCVIIL. L
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The point E of the equator, nearest the sun, is at the dis-
tance of a quadrant from either extremity of the axis of
libration. For, by hypothesis, SC is at right angles to the
plane DCF, and therefore the axis of libration, which is in
this plane, is at right angles to SC. Again, as PC the axis of
the earth is at right angles to the plane of the equator, the
axis of libration, which is alse in the equator, is at right angles
to CP. The axis of libration, therefore, being at right angles
to CS, CP in the plane PELQ), is at right angles to CE in the
same plane. ; o _

18. Let ADBE (Fig. 10.) be an oblate spheroid of which
AB is the transverse axis, DE the conjugate axis, and C the
centre. Let AKMBLH be the equator of this spheroid, and
consequently at right angles to ADBE the generating ellipse.
Let the spheroid be cut through DCE by a plane DMEL at
right angles to ADBE, and let MCL be its common section
with the equator. Then (19. XI.) MCL is at right angles to
ADBE, and therefore ACM is a right angle; and as ACD is
a right angle, AC is at right angles to the plane DMEL, and
consequently at right angles to any plane parallel to it. Let
the spheroid be cut by a plane parallel to DMEL, and let the
common section of this plane with the spheroid be the ellipse.
" FKGH. Let this ellipse cut the plane ADBE in the straight
line FrG, and the plane of the equator in KrH, the point r
being the centre of this last formed ellipse; or that point in
which it meets AB. Then, by a well known property of
the spheroid, the ellipses DMEL, FKGH are similar, and the
area of the first is to that of the other as CA* or its equal CM*
to rK*. Put a = ACor CM, ¢ = DC, x == Cr, and the force
of each particle in the spheroid being as its distance from the
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plane DMEL, let v be the force of a particle at A. ~ Let p =
the area of a circle whose diameter is 1. Then 4p2¢ = the

area of the ellipse DMEL and asa -4 x @ — & = a*'—2" =
K, @t at—at 12 gpae:: # « @ — 2* = the area of the ellipse
FKGH. Again,q¢:x::v: %— == the force of a particle at 7,
and therefore ‘—*—'L—x @ 7—z* = the force of all the particles

in the ellipse F KGH. Now as this force acts at 7, by the pro-

perty of the lever, the power of the ellipse FKGH, to turn
4pev

the spheroid, either about DE or ML as an axis, is *- x
a' 2’—z*; and the fluxion of this force is ii’——- x @ XK —a*x.
8pa3 ev d

The fluent of this, when x becomes equal to 4, is 5 an
the double of this, for the force of the whole spheriod, is

16pa’ ev
15
in the spheroid, to cause a revolution, be as its distance from

the plane DMEL, the particles on one side of this plane hav-
ing a tendency to cause a revolution in one direction, and the
particles on the other side of the plane having an equal tendency
to cause a revolution in the same direction, then the pressure
with ‘which the spheroxd is urged to revolve, either about DE

6
or ML, is as ~2 ”5 Z. This force is equal to —5- " Z, if Z be put
16pa® e

. Hence it is evident that if the force of each particle

equal to , the solid content of the spheroid.

19. As'the librating force — x '%l x a’—¢* x Z, ascertained

in article 16, and the force f’g Z, obtained in the last article,

are calculated on the same hypothesis, viz. that the force of a

particle is as its distance from the plane DCF in Fig. o, or)th‘e

plane DMEL in Fig. 10, if they produce equal angular velo-

cities, the spheroids in the two figures being equal in every
Le
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respect, and all other circumstances being the same, the forces
themselves must be equal. Now at either of the equinoxes
the other circumstances are exactly the same in the two figures.

At the vernal equinox, for instance, the stralght line SACB in
Fig. 9. must be in the plane of the equator, and therefore the
plane DCF, perpendicular to AB, at this time must pass through
the poles P, L. At the equinox, therefore, the straight line
SACB, and the plane DCF in Fig. g. are justly represented
by ACB, and DMEL in Fig. 10. Hence the librating force

d mn
775

equinox, applies to Fig. 10, and at its commencement it is
equally efficacious to cause revolution about DE or ML. We
are therefore enabled to compare the effect of the librating
force, or the revolution it is capable of producing, at the
equinox, about ML, with the diurnal revolution of the earth
about DE, in the following manner. ‘
It being admitted that each of the two forces, stated in the be-
ginning of the article, produces the same angular velocity, then
i x Z-:_e-xZ::-—- 7, and therefore d x mn x £55
But if a constant force act for a giventime #, and cause the
body to move on which it acts, the velocity generated from
the commencement of the motion is as the force. Conse-
quently, as v denotes the force acting on a particle at A, during
the given time 7, and as the forces acting on the other particles
of the spheroid are proportional to their distances from the
plane DMEL ; the angular velocity of A, acquired in the given
time £, is also accurately expressed by v. If therefore the
force 553 7 cease to act at the end of the given time #, the point
A, as the spheroid is in free space, will afterwards revolve

x @'—¢* x Z, at the.commencement of its action, at the

=7.
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with the uniform angular velocity »; but by the doctrine of
constant forces, the angle described by A, during the action

—

of-—;Z is equal to-——-—d- xmnxa

20. Let AB (Fig. 6.) represent that_diameter of the equator
about which the librating force begins to cause revolution at
the equinox. Let G be the centre of the earth and in GB let
. Let w denote the
angular diurnal velocity of the earth about. its axis DC: and
in GC let GW be taken equal to w. The points V, W being:
joined, let TGS be drawn parallel to VW, and by article 6,
TS is the axis about which the earth will now revolve, in con-
sequence of the diurnal revolution being combined with the
libration about AB. From T, a pole of this axis, let TK be
drawn perpendicular to DG. Then, by article g, GW : GV : :
GK:KT. But as the angle DGT is extremely small, GK
may be considered as equal to the radius, and the arc DT as

equal to its sine. Consequently, using the notation already
a'Z___ ez

GV be taken equal to -, or —‘L X M %

specified, and con‘;ldermga as radius, w: — x mn x

d
—f—xﬂ’Lﬂx

L a:

== the angular velocity caused by the hbratmg
force. Our next object is to find the value of 4 in known
terms. |
21. If ¢ be put for the time of the earth’s diurnal revolution
-round its axis, and T be put for the earth’s annual revolution
round the sun, then 3'1-’ is equal to the centripetal force on a
body revolving at the equator in the time t with the ve1001ty
w; and, using the notation of article 11, 'S—C? is equal to the

centripetal force of the sun on the earth. By the doctrine of

w* SC «a d axM

oo M
centripetal forces therefore SOl i i and o =
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w*x SC w*x SC3 x 1* . ' .
1 and M= ———=-—. But, by article 11, the dis-

turbing force of the sun on a particle at G (Fig. 7.) is equal
»t 3MS’E?H ; and at the distance a from DF the disturbing force

Mx . ‘ - o
3 scsa . The foregoing value of M being substituted for it

is

in this expression, we have -1”—--1—;
force at the distance a from DF.

This value of d being put for it in the expression at the
end of the last article, it follows that the angular velocity of

libration, at its commencement at the equinox is to the uni-

=d, the sun’s disturbing

t%
X mn /( tow or as

form angular dlurnal velouty as 2oxt ,1 ;

£ &= .

31"= X M X “to 1. But, according to the precedmg nota-
. . 6 ¢
tion, ¢ £: 36 0°: £2X = the uniform angular diurnal velocity,
, t* —e? 6ot
and therefore 1:-53—1-:;xmnx‘-'—a—f~..3 > 060)( 3T, x mn x
a*—e*

= the angular velocity of libration, at its commencement

at the equinox. But as the product mn is the only variable
quantity which enters into the value of the hbratlng force, ob-
tained in article 16, it is evident that g6o x 2L rl, X MN X fi:—-‘:
expresses the momentary angular velocity of libration at any
time. We are now to consider this effect of the librating
force in the direction in which the force is exerted, viz. in a
meridian analogous to PEAQ in Figure 7.

22. Let FLGA (Fig. 11.) represent the ecliptic on the
sphere, S the sun’s place in it, L the first point of Libra and
" A that of Aries; LBA the position of the equator when the
sun is at S, and SB the sun’s declination. Let FBG be
the position into which the equator is pressed in the time
#, by a combination of the librating force and the diurnal
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revolution ; or, which comes to the same, let the spherical angle
FBL or ABG be equal to gbo x %fft; X M x ——, Let h=

a

a*—e*

——. Then by spherical Trigonometry, sin. F : sin. BL: : sin.
B: sin. FL; and therefore, as FL and the angle FBL are ex-

3tt
PY LR

tremely small, the momentary precession FL = g60 x
sin. BL
sin. F° ,

23. If FG be bisected in C, and the arc CE be perpendi-
cular to FG, meeting LBA in E, and FBG in D ; then the arc
CD is the measure of the angle at F. Also, as FL is ex-
tremely small, CE may be taken for the measure of the angle
at L. Hence as BDE is a right angle, radius : sin. BE or cos.

BL:: sin. EBD : sin. ED. Consequently as ED is extremely

tt cos. BL
2Tz x hmn x i = ED, the momentary nuta-

tion, or the momentary change in the inclination of the equator
to the ecliptic.
From the last proportion, and that concluding the preceding

. . . . . .sin.BL cos. BL . . radius x sin.BL
article, it follows that FL: ED : : o F mdo oL

. o . radius x sin. BL
:sin. F. But cos. BL : radius : : sin. BL, : — P = tang.

BL; and therefore, the momentary precession FL is to the
momentary nutation ED, as the tangent of the right ascension
BL to the sine of the obliquity of the ecliptic.
24. Let b == the sine of the obliquity of the ecliptic, ¢ = its
_cosine ; = == the arc LS, x = its sine, and y ==1ts cosine ; and
let 2p = the circumference of the eclipticc. Then as LBS is a
right angle, by the circular parts, cos. BS x cos. BL = radius
x cos. LS; that is z x cos. BL = », radius being 1. Again,
radius: x : : b: br == the sine of BS = . Consequently, cos.
BS x sin. BS x cos. BL = m#n x cos. BL = bxy; and therefore,

hmn

small, g6o x
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by the preceding article, the momentary nutation is 60 x 3 ri

x hbzy, radius being 1.
Tz

2p

Again, 2p:%::T: = . Alsos/l—xx_.y, and, by

the fluxional doctrine of circular arcs, z = : and there-
. l-—xx
fore { = ‘WT*; . These values of # and y being put for them
2 I—xZ

in the above expression, the momentary nutation, or, which

is the same thing, the fluxion of the nutation is g6o x -j—%x

’-’%i Consequently the nutation, when the sun is at S, is
3t bbxx
360 X T
When the sun arrives at the solstitial point C, then z be-
bb
y T
—-e’ b 3t a”'—e x 6o
180 % 4T X% in degrees, or 10800 x X TE

in seconds. \Tow t = one sidereal day, T = 366 % =-—__'4f5, and

comes equal to 1, and the nutation is then g6o x ==

therefore 4T = 1465. According to Sir Isaac NEwTON’s

determination of the figure of the earth, a is as 231, ¢ as 230,
and therefore 5% = 5-‘-;—?—;—; Also supposing the obliquity of
the ecliptic 28° 27 45", b=.3981487, and p =g. 14159265
3t @ —-e" bx 6o 461
X = 10800 x ——

Consequently 10800 x =% x —— x = 1465 s

x 22888922 " the computation of which may be finished in the
3.14159265’
following manner.
10800 Log. 4.03342388 | 1465 Log. - - 3.1658376
3 Log.0.4771213 | 58361 Log. - - 4.7272240
461 Log. 2.6637009 | 8.14159265 Log. 0.4971499
28.888922 Log. 1.3781998 8.3902115
85524458 |
8.3902115

0.1622348 = Log. of 1".4529, and there-
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fore the nutation caused by the action of the sun in a quarter
of a year is 1” 24" nearly.

e5. By the circular parts, radius x ¢ == cot. LS x tang. BL
vVii—

== ¢, radius being 1. Buta:vi—zz::1:="""=cot.LS;

nd therefore Vl—xx = tang. BL. nsequently by the last
icle 2g, b: —<= LAY L 3tk

and article eg, b: ek : 860 x % x ek g6o x o il

*x

== the fluxion of the precession when the sun is at S.

Vi—zx

Now the fluent of

22 5% . g=—xVi—x ] N ,
L. is — =, For ¢ =—2— and
1—xZ 2 / Lemax

the fluxion of z V1i—zrisx V 1—1r —

x% %

Conse-

l—ax

quently the whole fluxion of 2 — z v/1—zz is

’\/I—-.Z’x

x x X% % x* %
—xx — b —— ——
\/1 + Vx-xx V {2 Vl--xx+ V—xx + Vl-xx=

Consequently the fluent of the precession, when the

2x* X%

Vi—xzx

sct b z—xVi—zx

sun is at S, 15360):.—4-.Fx-1;-x - .

When the sun arrives at the solstltlal pomt C, then & be-

comes equal to 1, and = becomes equal to -—, and the quantity

of the precession is then g6o x 4T X z = 360 x :t b

‘This expressed in numbers, admitting the obliquity of the
3 461 Ll

ecliptic to be 2g° 27" 45", is go x —— 7265 X 336r X 91 3813 in de-

grees,and the same in seconds is 5400 X-XZ%? ; 336][><55 .0428%8.
This calculation may be finished in the following manner.
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5400 Log. 37323088 | 1465 - Log. 3.16583%6
3 Log. 0.4771218| 53361 - Log. 47272240
461 Log. 2.6637009 78030616
55.042878 Log. 1.7407010 ‘
8.6189170
7.8930616

07208554 = Log. of r” 2584,
Consequently the annual precession, caused by the disturbing
force of the sun, is 21”.0336.
The obliquity of the ecliptic has been assumed as equal to
23’ 27’ 45", such being its magnitude, very nearly, at the
beginning of the year 1807.

t  bb ’ N .
-2%f , obtained in

From the general expressmn 860 x f
article 4, it is evident, that when the sun is in either of the
equinoctial points, the nutation becomes equal to o. Supposing
therefore the earth to be subject to no other disturbing force
than that of the sun, at each of the equinoxes the earth’s
diurnal revolution is made about its axis of figure, as PL in
Fig. 9; but as at other times the disturbing force tends to
cause a libration about a diameter of the equator, it is evident
from article 10, that the axis about which it revolves deviates,
by a quantity extremely. small, from its axis of figure. A
similar deviation, of the axis of revolution from the axis of
figure, is produced by the action of the moon ; but a minute
examination of these deviations is foreign to the present
design. As the forégoing articles extend beyond the supposed
difficulty in the subject, it is deemed unnecessary either to add
to their number, or to lengthen this Paper by such additional
remarks, as may be met with in every respectable publication
on Physical Astronomy.
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